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Abstract. Assume we have k points in general position in the plane such that the 
ratio between the maximum distance of  any pair of  points to the minimum distance 
of  any pair of  points is at most crx/k, for some positive constant a. We show that 
there exist at least flk 1/4 of  these points which are the vertices of  a convex polygon, 
for some positive constant /3 = /3(a ) .  On the other hand, we show that for every 
fixed e > 0 ,  if k>k(e) ,  then there is a set of  k points in the plane for which the 
above ratio is at most 4 ~ ,  which does not contain a convex polygon of  more than 
k 1/3+~ vertices. 

1. Introduction 

For  any pos i t ive  in t ege r  n, let  f ( n )  be the  smal les t  i n t ege r  such  tha t  f r o m  every  

set o f f ( n )  po in t s  in gene ra l  pos i t i on  in the  p l ane  (i.e., no  three  are  on  a l ine) ,  

it is a lways  poss ib l e  to se lec t  n po in t s  w h i c h  are  the  ver t i ces  o f  a c o n v e x  n -gon .  

ErdSs  a n d  Szekeres  [3],  [4] p r o v e d  tha t  f ( n )  exists  and  s h o w e d  tha t  

2 " - 2 + l ~ f ( n ) - \  n _ 2 / + 1 .  

* The work of the first author was supported in part by the Allon Fellowship, by the Bat Sheva 
de Rothschild Foundation, by the Fund for Basic Research administered by the Israel Academy of 
Sciences, and by the Center for Absorbtion in Science. Work by the second author was supported 
by the Technion V. P.R. Fund, Grant No. t00-0679. The third author's work was supported by the 
Natural Sciences and Engineering Research Council, Canada, and the joint project "Combinatorial 
Optimization" of the Natural Science and Engineering Research Council (NSERC), Canada, and 
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In this paper  we study the effect of  restricting the g e o m e t r y  o f  the configur- 
ations. The configurations which establish the lower bound  on f ( n )  have some 
pairs of  points very close together and others very far apart. We investigate the 
effect o f  placing an upper  bound  on the ratio o f  the maximum and minimum 
distances and show that, in this case, substantially stronger results are true. 

Let A -- {al,  • • •, ak} be a set o f  k points in general position in the plane, i.e., 
no three lie on a line. Let d o = d(a,, aj) denote the Euclidean distance between 
ai and a,, We define 

q(A) = max{d°: 1 <- i < j - <  k} 
min{d,j: l <- i < j <- k} " 

That is, q(A) is the ratio o f  the diameter  to the minimum distance between any 
pair  of  points. We can assume without loss of  generality that 

min{d,j: 1 -< i < j - <  k} = 1. 

In this case, q(A) is just the diameter o f  A, and if we construct  a disk D, of  
radius ½ centered at a, for 1 , 2 , . . . ,  k, then the set {D~, D2 . . . . .  D~} is a set 
o f  nonover lapping  unit disks. The total area o f  the disks is krr/4 so they cannot 
be contained in a circle o f  radius less than x/k/2. Therefore q(A) >- cx/k for some 
positive constant  c. We consider  the effect o f  requiring q(A)<-av/k for some 
constant  ct. That  is, the diameter  of  A is bounded  by a constant  multiplied by 
the square root of  the number  o f  points. In this case we show that there exists 
a constant  /3 > 0 such that A must  contain a convex polygon containing flk ~/4 
points. On the other hand,  for every fixed e > 0, if k > k(e),  there exists a set A 
o f  k points which satisfies q(A)-< 4x/k but does not contain a convex polygon 
o f  more than 2k 1/3+~ vertices. 

Let c(A) denote the size of  the largest subset o f  A which forms the vertex set 
o f  a convex polygon.  We illustrate the effect on c(A) of  bounding  q(A) by 
considering the case [A I = 4. If  c(A)= 3 then one point  p~ is conta ined in the 
convex hull o f  the other three, P2, P3, P4. So one angle formed at p~, say 2~p2plp3 
is at least 2rr/3. Therefore,  if d o-> 1 for 1-< i < j ~ 4 ,  we must have d23~x/-3. 
Therefore q(A)>-x/3. Consequent ly ,  if we require q(A)<x/3  we can ensure that 
the points form a convex 4-gon. (Note  that x/3 is best possible, for if p~ is the 
center o f  an equilateral triangle with vertices P2, P3, P4, then q(A)= x/3.) 

The lower bound  for c(A) is proved by geometric arguments  (in Section 2) 
and the upper  bound  is established by probabilist ic arguments  (in Section 3). 

2. The Lower Bound 

In this section we prove: 

Theorem 2.1. For any positive constant a, there exists a positive constant fl = fl ( a ) 
such that irA is a set ofk  points in general position in the plane such that q( A ) <- ctx/-k, 
then c(A) >-/3k 1/4. 
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The p roo f  relies on two lemmas. 

Lemma 2.1. L e t C b e a c i r c l e o f r a d i u s r > 4 w i t h c e n t r e O .  L e t A s a t i s f y 2 / x / 7 < A <  
t. Let  xl , x2, •. •, x,,  be points arranged in a cyclic order on C such that ~-xi Ox,+ ~ >- A 
and &x,,Ox~ >-- A. For i = I, 2 , . . . ,  m, let 19, be a disk o f  radius ½ centered at x, and 
let a, ~ D,. Then a~, a2, • . . ,  a,, are the vertices o f  a convex m-gon. 

Proof The points x~, x2 . . . .  , x,, are the vertices o f  a convex m-gon.  Since the 
distance between a, and x, is at most  ~, it is sufficient to prove that the distance 
between xj and the line joining xs_ j and x,+~ is more than 1. Let h denote this 
distance, We have 

2A [ A \  2 s in2(~/3)  > 2 x 1 27 
h > - - r ( 1 - c o s A ) = 2 r s i n  -~>--2r~-~) x (rr /3)  2 x4----5>1 

as required. []  

Lemma 2.2. Let D~ and D2 be two nonoverlapping disks o f  radius ½ with centers 
al ,  a2 respectively, each o f  which intersects a f ixed  circle C o f  radius r > 7 centered 
at O. Suppose either both a~ and a2 lie outside or on C or else both lie inside or on 
C. Then 0 = ~ a l O a 2 > O . 8 / r .  

Proof Assume tO<-0.8 and that, say, al and a~ are both on or  outside C. 
Consider  an appropr ia te  arc on C, o f  length 0.8, and the corresponding one on 
the circle concentric to C, of  radius r+½. The annulus sector defined by these 
arcs contains aj and a2, and thus has diameter-> 1, but this is a contradict ion 
for large r, as the sector is then nearly a 0 .8x0.5  rectangle. (Consult  [1] for 
similar arguments.)  []  

Proof o f  Theorem 2.1. Assume that the min imum distance between any pair o f  
points o f  A is 1. Then q ( A )  is the diameter  o f  A. By Jung 's  theorem (see Chapter  
16 o f  [7] or  Problem 31 o f  [5]) the points o f  A are contained in a disk Q of  
radius at most (x/-3/3)q(A) <- (x/3a/3)x/k centered at a point  O. For  each a, ~ A, 
let Di be a disk with radius ½ centered at a,. Consider  the concentr ic  circles 
centered at O with radii 1, 2 . . . . .  [(3a/3)v~-kJ. At least one, say C of  radius r, 
will intersect at least (x/3/a)x/k of  the D,. All of  these disks lie completely within 
the annulus determined by the circles o f  radii r - 1 and r + 1, centered at O. The 
area of  this annulus is 47rr and the area of  the D, in this annulus is at least 
(x~Tr/(4a))x/~. Therefore r -  > (x/3/(16t~))vt-k. 

At least one half, i.e., (v~ / (2a ) )x /k ,  o f  these 19, must lie either within or  on 
C or else outside or  on C. Assume we have the latter situation; the former  is 
handled identically. Order  these disks in accordance  with the order  in which they 
meet C. By Lemma 2.2, if a~ and a~ are the centers o f  consecutive disks, then 
~aj Oa~ > 0.8/r. Arbitrarily choose one o f  the centers o f  these disks, say bi,  as a 
starting point  and then, traveling clockwise, let b2 be the center of  the [2.5x/7]th 
disk, let b 3 be the center o f  the 2[2.5x/r]th disk and, in general, let b, be the 
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center of  the ( i -  1) [2.5v/-r]th disk. Then ¢b,  Obi+, >- (0.8/r)2.547 = 2/x/-r. By 
Lemma 2.1, these points are the vertices of  a convex polygon. The number of  
these points is at least (v /3k / (2a)) / ([2 .5vc7]) .  For r_> 10, [2.5v~] --3,,~. We also 
have r <-- a x/k/v~. Therefore the number of  these points is at least k ~/4/(31/42 0¢ 1.5). 

Hence setting t3 = 1/(3~/ '2a LS) gives the result, for k sufficiently large. [] 

Arguments similar to those used to prove Theorem 2.1 can be used to prove 
the following: 

Theorem 2.2. For any ~ satisfying ½<- 8 < ~ for  any positive constant a, there exists 
a positive constant/3 =/3 (a, t~) such that i r A  is a set o f  k points in general position 
in the plane where q (A)  <- cek ~, then c (A)  >-/3k 1-1"5~. 

3. The Upper Bound 

In this section we prove the following result: 

Theorem 3.1. For every e > 0 there is an integer k(  e ) such that for  every k > k( e ) 
there exists a set A o f  k points in the plane satisfying q( A ) < 4x/-k and c( A ) < 2k I/3+~. 

The proof  is probabilistic. We start with a geometric iemma. 

Lemma 3.1. Let P be a convex polygon on m vertices and let q denote the diameter 
o f  P, i.e., the max imum distance between a pair o f  vertices o f  P. Then for  every t in 
the range 0 <  t < m /15 there are t consecutive vertices p~, P2, • • •, P, o f  P such that: 

(a) The distance between Pi and pi+l is less than l O t q / m  for  all 1 <- i < - t - 1. 
(b) 7r>-,~,pip~+lpi÷2 >- z r -  1 5 t / m  for  all 1 <- i <- t - 2 .  

Proof. Let qo, q~ , . - - ,  qm = qo be the vertices of  P in accordance with their cyclic 
order. By Jung's theorem there exists a disk of  radius x/3/3 • q which contains 
P. The perimeter of  this disk is 2"trx/3/3. q < 5q and hence the perimeter of  P is 
smaller than 5q. Thus the sum of  the lengths of  the edges q~qi÷l is smaller than 
5q. Put 

B = {i: qiqi+l > lOtq /m} .  

Since [B[lOtq/ m <- Y ,~a qiqi+J < 5q, we conclude that 

] B [ K m / 2 t .  (3.1) 

For every index i, let ei denote the quantity ¢r-egq~q,+lq,+2. Clearly, ~i'~t e,-- 
2~- and each e~ is nonnegative. Put 

C- -  {i: e ,>  15t /m} .  
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Since I C l l 5 t / m  <Y-,~c e~ <- 2~, we conclude that 

ICI < 2r rm/15 t  < m / 2 t .  (3.2) 

By (3.1) and (3.2) there are less than m~ t indices i with i ~ B u C. Hence there 
are t consecutive i's such that i ~ B u C ,  i.e., such that q , q , + ~ < l O t q / m  and 
~_q~q~+~q,+2>-- zr - 1 5 t / m  for each of  them. Let p~, P2, •. •, Pl be the correspond- 
ing points o f  P. Obviously these satisfy (a) and (b). This completes the 
proof, f-1 

Given a (large) positive perfect square k = r 2, we construct  a random set A = Ak 

in the plane as follows. For  0 -  < i < 2 r  and 0 - < j < 2 r ,  let S,,; be the unit  square 
given by S ~ . i = { ( i + x , j + y ) : O < - x < l , O < _ y < l } .  For each even i and even j, 
0 -  < 1 < 2 r ,  0 - < j < 2 r ,  independently,  let us choose one random point  p~.j in S,.j, 
according to a uniform distribution. A = Ak is the set consisting of  these k = r 2 

points. Clearly, the distance between any two points o f  A is at least 1, and the 
diameter o f  A is at most  2,,/2,,/-k < 3,/-k. We next show that, for every fixed e > 0, 
if k = r 2 is sufficiently large, then with positive probabili ty (and, in fact, with 
probability that tends to 1 as k tends to infinity), A contains no convex polygon 
of  size greater than k L/3+~. Indeed,  by Lemma 3.1, with m = [kZ/3+~], t = [2 / e ] ,  
and q = 3v/k we conclude that every such polygon must contain t consecutive 
vertices p~, p 2 , . . . ,  p, such that 

p , p , ~ l < - l O t q / r n = O ( k  i/6-~) fo ra l l  t ~ i < t ,  

rr >--~p,p,+ lp,+ 2 > - 7 r -  15 t /  m = r e -  O ( 1 /  k l /  3+~). 

(3.3) 

(3.4) 

Put x = l O t q / m ,  or= r r -  1 5 t / m .  Let us estimate the probabili ty that A contains 
such a sequence of  t points. 

We claim that the number  of  choices for the squares S,,.,, from which such a 
sequence can be formed,  is bounded  by O(kx ' ) .  (In all the O notation here we 
mean that e (and hence t) are fixed, and k (and hence m) tend to infinity.) 
Indeed, the first S,.~, denoted  by S~, can be any of  the k possible squares, and 
the last S,,1, denoted by S,, must be within a distance of  tx from the first, and 
thus the number  of  ways to choose these two is O(kx2) .  Given S~ and S,, each 
other candidate  S,.; must be a square which is very close to the strip which is the 
convex hull o f  $1 and S,. Indeed,  if p~, P 2 , . . . ,  P, satisfy (3.4), then, for all 
1 < i < t, ~p~p,p,  >_ rr - 15 t(t  - 2 ) / m  = rr - O ( 1 / k  ~/3+~ ), and hence the distance 
between p, and the line p~p, is at most O ( t x t 2 / r n )  = o(1). There are O ( t x )  = O ( x )  

squares S,.; satisfying these requirements and the number  o f  ways o f  choosing 
( t - 2 )  o f  them is O ( x ' < ) .  This establishes the claim. 

Given a fixed set o f  t distinct squares S~, S: ,  . . . ,  S,, in which it is possible to 
choose P, ~ S, which satisfy (3.3) and (3.4), we next claim that the probabil i ty 
that indeed the chosen p, 's will satisfy (3.3) and (3.4) is bounded  by 

O((sin or- x) ' -2)  = O( 1/k '  i/~,+2~ ,t ,-2J). 
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Indeed, given p~ and P~+I, and given Si+2, in order to satisfy ~.p~p~+,p,+2 > - or, P,+2 
must lie in a region of  area O ( s i n o ' . x ) = O ( l / k  ~/6+2~) inside S,+2. By the 
independence of  our choices the claim follows. 

Combining the two claims, we conclude that the probability that A contains 
t points p~, P 2 , . . . ,  P, which satisfy (3.3) and (3.4), is bounded by 

O((kx ' ) .  1/k ~I/6+2"~'-21) = O(k  I 3.',*2('/6+2e)). 

Substituting t = [2 /e ]  and assuming, say, that e <2,  gives O(1 /k  4) and hence if 
k is sufficiently large, this probability is smaller than 1. 

We thus proved that for every e > 0 there is a k(e)  such that for every perfect 
square k > k ( e )  there is a set A = A R  of k points in the plane with q(A) <3x/k 
and c(A) < k 1/3+t'. If k > k(e) is not a perfect square, put K = Ix/k] 2 and take 
any subset of cardinality k of the set Ak. This set has k points and satisfies 
q(A)  < 3x/~-< 4x/k and c(A) < K'/3+~ < 2k,/3+L This completes the proof of 
Theorem 3.1. [] 

It is interesting to note that if q(A) is bounded by ax/k then c(A) is also 
bounded from above by y~f-k: 

Theorem 3.2. For any positive constant a, there exists a positive constant Y = 3'(a ) 
such that if  A is a set of  k points in a general position in the plane such that 
q(A)  <- ax/-k, then c(A) <- T,,/k. 

Proof Again, assume that each pair of points of A is at least one unit apart. 
By Jung's theorem there exists a disk Q of radius at most (v'~/3)q(A) ~ (x/-3a / 3)x/£ 
which contains all points of  A. The perimeter of this disk is at most (2~-x/-3a/3)x/k. 
Let P be a convex polygon whose vertices belong to A which has c(A) vertices. 
The length of P is therefore at most (2rrv/3a/3)x/-k. Since each pair of vertices 
is at least distance 1 apart, P contains at most (27rv~a/3)x/k vertices which gives 
the result. []  

Finally, a related problem: suppose that q(a) < - ax/-£ for some a > 0  and k is 
large. Does it follow that A contains the vertices of  an empty convex 7-gon, that 
is, a convex 7-gon which does not contain any members of  A apart from its seven 
vertices? If  the restriction on q(A)  is removed, then Horton [6] has constructed 
such sets A having no empty 7-gon. 
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